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We investigate the nonlinear closed mathematical model of three-dimensional 
concentrated Marangoni convection, such as is developed at the boundary separ- 
ating an electrolyte from a liquid-metal cathode. 

The mathematical modeling of convection-type hydrodynamic structures at the boundary 
between a liquid and a liquid is currently undergoing extensive development. A large number 
of studies [i] have been devoted to the linear analysis of surface instability. In a number 
of papers [2, 3], use is made of the small-parameter method, in conjunction with asymptotic 
methods, to study the formation of steady-state convective structures in the region of weak 
supercriticality. The fluctuating nature of instability generation lies at the very basis 
of the mathematical modeling of interphase Marangoni convection. Its very physical nature 
is associated with the directed flows of heat or mass through interphase boundary, closing 
the positive feedback loop between interphase tension and the convective flows. 

The existence of Marangoni instability is validalso in electrochemical systems in 
which a directed flow of a mass of electroactive particles is set up out of an electrolyte 
in the direction of a liquid-metal electrode. Electrochemical systems with liquid-metal 
electrodes serve as possible potential technological sources for a number of metals, as well 
as systems by means of which these metals can be refined. The study of surface hydrodynamic 
regimes is therefore urgent, since it is these regimes that significantly accelerate the ex- 
change of mass. As demonstrated by experimental research [4, 5], at the boundary between the 
electrolyte and the liquid-metal cathode-polarized electrode, given specific values for the 
applied emf, we observe an interphase Marangoni convection in the form of three-dimensional 
circulation cells 10 -3 m in dimension, covering the interphase surface. The initial theoret- 
ical analysis of the Marangoni convection of an electrochemical system is to be found in [6], 
and it is continued in [7, 8], where the methods of linear stability analysis yielded dis- 
persion relationships and the region of electrochemical potentials determining the Marangoni 
instability. 

However, a significant limitation of the model developed in [6] involves the derivation 
of the boundary conditions at the reaction surface in linear approximation, preventing the 
execution of a nonlinear analysis. 

In the present paper we investigate the nonlinear closed model of three- dimensional 
concentrated Marangoni convection within a bounded geometry. We simulated the electrochemi- 
cal system "electrolyte-liquid-metal cathode" by means of two incompressible nonmixing li- 
quids separated by a plane infinitely thin interphase boundary (Fig. i). We investigated 
the process of cathode ion deposition on a uniform liquid-metal substrate (electrochemical 
refining [4]). It was assumed that the electroactive particles (EAP) are contained in large 
quantities in the electrolyte which provides small currents within the electrochemical sys- 
tem and for the macroscopic electrical neutrality of the electrolyte all the way to the dual 
electric layer. Approximation of the diluted solutions made it possible to eliminate the 
release of heat and the influence exerted by volumetric forces near the reaction surface. 
We neglected the boundary effect at the solid walls in the approximation of the developed 
reaction surface. We assumed the diffusion kinetics to be the limiting stage of the electro- 
chemical reaction. The Navier-Stokes incompressibility equations were made part of the math- 
ematical model, for each of the bases and the convective diffusion of the EAP: 
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Diagram of the electrochemical system: 
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The structuring of the instability region: 0C) instability re- 
gion; 0A) circulation cell velocity deceleration region; AB) region of 
developed Marangoni convenction with high-cell velocities; BC) circula- 
tion cell quantization region. 

aVe 
+ Ve (vV~) = %AVe (x, V, z, t), div V~ = O, 

at ( i)  

OCe + V~ (vC~) = D~AC~ (x, g, z, t), 
at 

~  = v~AV~(x,  v, z, t), divVm = O, 
Ot 

where subscript e represents the electrolyte and m represents the liquid-metal cathode. 

The following boundary conditions were specified at the walls (x = 0; L I and y = 0; L 2) 
in the form of mass flows equal to zero and the normal velocity components, as well as in 
the form of attenuation of the velocity at some distance from the boundary (z = • and the 
concentration field in the form Ce(x , y, z, t) = C0ewith z = +~. 

The boundary conditions of adhesion, phase slippage without penetration, the condition 
of electrochemical reaction, and a balance of tangential momentum components were all speci- 
fied at the reaction surface z = 0. The detailed derivation of these last three boundary 
conditions was accomplished in [8]. They are of the following form: 

6~ aCe - -  (exp ( - -  ~U) - - 1 )  C~ (x, V, z, t), z = O ,  
Oz 

( av,o av,, 1 ( av, ml 
n~ \ - - E  + - o - T ~ - % "  a x ' a z / -  

' 0  
+ - E -  ) - n " a v +--E/=- a u 

a~ ou oc~ 
OU OC~ Ox ' 

au ac~ 
, z = O .  ace av 

(2) 

(3) 

Approximation of the small currents made it possible to neglect the Ohmic losses lead- 
ing to the heating of the electrochemical system. However, such idealization is possible 
only in the finite interval of polarization values, which leads to a modification of the 
boundary condition (2) with expansion of the coefficient in the right-hand side into ~ ser- 
ies and to a finite-number limitation of the terms: 

6~ OC~ _ ~ (~U)~ 
Oz ~ (--1)P Ce(x, V, z, t), z =  O. ( 4 )  

p=l pl 
The number r is determined from an approximation of the volt-ampere characteristic at the 
limit currents. The value of the current fluctuation was initially calculated in the satur- 
ation region 

(Ai/ilim) = 1 - -  exp (~AU). (5) 
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The quantity AU is determined by the noise level of the system formed by the object and the 
regulator. The range in kU is found from the expression 

0 < IrlJ[ < ['.In ( A i / i . )  1. (6) �9 .I.3Jn 
The accuracy in the approximation of the last term of the series is determined as follows: 

(-- KU)r < exp t~AU I - -  1. ( 7 ) 
r! I 

For each specific system it is possible to determine the value of r (7). 

A linear analysis of the stability of model (i) was undertaken by the Fourier analysis 
method [i, 6, 8, 9] for three-dimensional perturbations of the normal velocity components, 
of the rotation and of the perturbation of the linear concentrated profile. Linearization 
was accomplished by substitution of the indicated perturbations into (i) in the form 

where 

A,,, (x. y. z. t) = A~ (z) F~ (x. y) exp (p,t). 

/cos (k~.x) cos (ky.y) fo~ V~, V~,., S~. 
F~ (x, y) = [sin (kxnx) sin (kuny) for (Oz,, o)z m. 

( 8 )  

Having equated to zero the determinate of the stability matrix [i], we found the dis- 
persion relationship which links the time constant Pn, the wave vector k n and the parameters 
of the system: 

, / Co2~ 
(~, -1/k] -q- (p,/%) q- nm ]/k~ q- (p,l~m)) ~ ~ (1 - -  exp (nU)) X (9) 

where 

X OU OC, p~ 
De~, l 

%-- D, Pn 
(1/k2+ (p,lv ,) - b~,,) + 

"-]-('~1 (O)-.[-~,ber~ ) Pn ( "q" "~ lira V '  l.~2n .-Jr-(phil, ) --k77" )] = \ \  0, 
, ,  , . .  V t~ + (pdv,.) - -  k .  \ / /  

~I(U) = ( - - 1  + (--Ir ) ; r ,  b~, = "1/le]+(pJD:). 

Its asymptotic for small [Pn/kn2De[ (the case of weak supercriticality) has the following 
appearance: 

RT (exp( - -~U)- -  1~ 0a - -  2Dfle,~ le,(+ 
n*F 46, ('q, -I- ~lm) 0---U 

J ( l o )  

The marginal solution (Pn = O) determined the critical value of U c, corresponding to 
the onset of Marangoni instability: 

C RT (exp(--rU~)--l)  - - ~ -  u--~," 8 (n, + ~ )  D,~, (Vl (U,) + 8,k,) = n*F (11) 

The n o n l i n e a r  a n a l y s i s  was c a r r i e d  ou t  in  t h e  r e g i o n  of  weak s u p e r c r i t i c a l i t y  in  one o f  
t h e  p roposed  i n s t a b i l i t y  modes. Boundary  c o n d i t i o n  ( 2 ) ,  a f t e r  e x p a n s i o n  of  t h e  c o e f f i c i e n t  
in  t h e  r i g h t - h a n d  s i d e  over  t h e  p e r t u r b a t i o n s  in  c o n c e n t r a t i o n ,  a c q u i r e d  t h e  f o l l o w i n g  form: 

6, OS, = ? I (U)S ,q-  Ba(U)S~ +fls(U) S~, z =  0, (12) 
Oz 

where 

1 exp (--  ~U) ~ - l U ' - I  1 exp (--  3~U) 
- -  - -  B s ( U ) = - -  C~ �9 BI(U) = 2 Co e ( r - - l ) !  ' 6 o e 

The c o o r d i n a t e  p o r t i o n  Se (x ,  y ,  z ,  t )  was d e t e r m i n e d  t h r o u g h  l i n e a r  a n a l y s i s  o f  s t a b i l i t y .  
Having e l i m i n a t e d  t h e  i n t e g r a l  t e rm in  t h e  s o l u t i o n  of  t h e  nonun i fo rm d i f f u s i o n  e q u a t i o n  
w i t h  t h e  a i d  o f  boundary  c o n d i t i o n  ( 3 ) ,  m o d i f i e d  f o r  t h e  p e r t u r b a t i o n s ,  from (12) we d e r i v e d  
t h e  f o l l o w i n g e q u a t i o n :  
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oo 

= - -  n=l  71 (U)  - -  2k,,Del n*FR'--~T (exp ( - -  ,~U) - -  I )  4 ( r l ,  + ~lra~' X 

• OU / cos kxnX cos kuny + ~.~ B 1 (U) Ced (t) Cep (t) COS kxdX COS k.gcty X 
d,p=l 

(13) 

oo 
• cos kxpx cos kupg --  ~ B~ (U) C~ (t) C~ (t) Ce~ (t) cos k xx  • 

a,B,~=l 
• cos ku.g cos k.~x cos ky~g cos kx~x cos kyvy. 

L e t  us n o t e  t h a t  in  a p p r o x i m a t i o n  o f  t h e  s l o w l y  ch an g in g  a m p l i t u d e s  ben = ' l / ~ q - ( p J D e )  
(13)  i s  expanded  w i t h  t h e  l i n e a r - t e r m  l i m i t a t i o n :  

b~u~-- k~ 1 + 2 k~D~ " 

Since in linear analysis of stability we made use of the exponential dependence on tine, it 
was assumed that in the region of weak supercriticality the operator relationship was satis- 
fied, namely: 

p,,Ce,, (0 ~ --~ C,,, (t). (15) 
Condition (13), after substitution of (15), became fundamental for the derivatioa of 

the equation for the evolution of the order parameter. It was assumed that in the region of 
weak supercriticality one of the modes with (kn)mi n = kf ~ 0 become unstable. The pr3cedure 
for the derivation of the equation for the order parameter with a single unstable mode is 
well known [i0]. After a number of algebraic transformations, associated with the adiabatic 
exclusion of the rapidly relaxing variables, the equation for the unstable mode assumed the 
form 

dr(t) = (  2Vek,ls (--ts - R T (exp(--/s162 (16) 
dt 6, (r - -  1)! n*F 46e (~]e + rl,.) 

_ 3 e x p ( - - 3 n U  DD~k t p(t). 
166eCo e 

Since the coefficient for fa in (16) is negative, a normal bifurcation situation was 
achieved [ii]. The steady-state soltuion for f(t) is given by" 

I ( ( -  + )T. 
/ s t =  +C~ 3 e x p ( - - ~ U  D ( r - -  1)1 n*F 3Dekf(~leq-'rlr~)exp(--2t~Ue) (17)  

The u n s t a b l e  mode in  t h e  p e r t u r b a t i o n  o f  c o n c e n t r a t i o n ,  which  f u n c t i o n s  in  t h e  r ~ l e  o f  
the order parameter, is stabilized as a consequence of the nonlinearity of boundary c3ndi- 
tion (2). The bifurcation transition from one node into two described by Eq. (16), demon- 
strated the mechanism for the formation of the first convective regime. The three-dinension- 
al skeleton of the regime in approximation of weak supercriticality is determined by rela- 
tionships (8). The steady-state solution (17), with the aid of boundary conditions (3), 
made it possible to find the characteristics of the stabilized Marangoni convection (listri- 
bution of the normal component of velocity and the distribution of the EAP): 

OU OC~ u=u~+,w f~tz x V,, (x, g, z) = - -  2 (n~ + n,) 

• exp ( - -  kjz)cos k~1x cos kujy; 

V~,.(x, y, z ) -  ~" V~(x, y, z); 
We 

Co, 
C~ (x, y, z) = ~ (1 -- exp (~UD) z + Co~ exp (~U~) + / s t  exp (-- klz) X 
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X cos kxtx cos kv~ + Co, (1 - -  exp (toUt)) 
8,D~ 2 (n~ + ,]~) 

• (18)  

OU OC. /Iv=v.+au ~ exp(--ksz)c~ c~ 

This study made it possible to structure (Fig. 2) the region of Marangoni instability, 
as opposed to [6] for systems of bounded geometry. At the edges of the instability region 
(near the equilibrium polarization and about the potential of zero change) there exists in- 
tervals in the generation of large-scale surface structures with slow internal velocities. 
The developed Marangoni convection corresponds to the regime of high Convective-structure 
velocities with k n = (6e)-l. Moreover, it becomes clear from an analysis of relationship 
(ii) that, when U ~ 0, we are dealing with two unstable modes. The results of this simula- 
tion qualitatively explain the experimental data [4, 12], which demonstrate the growth in 
the number of cell structures under potentiostatic conditions with a change in the concentra- 
tion polarization from the boundaries of the instability region to its center. 

Let us note that the value of k n specifies the spatial distribution of the forming 
structure in nonunique fashion: 

k. = ~ "l/(nl/L1) z + (ndL~) ~, where nl, n, = O, l, 2 . . . .  ( 1 9 )  

The realization of a total or three-dimensional cellular structure with an arbitrary rela- 
tionship between L I and L 2 calls for additional study. 

Mathematical simulation of a two-phase system with nonlinear boundary closure is 
achieved in the region of weak supercriticality, given the assumption of slowing changing 
amplitudes. Subsequent analysis of developed Marangoni convection in electrochemical sys- 
tems with liquid electrodes can be accomplished in the following ways. Of interest is a 
study of the supercriticality region with several unstable modes, following the diagram in 
[i0]. However, the study of all possible hydrodynamic surface regimes is extremely diffi- 
cult from an analytical standpoint. Among the promising directions we have the invariant- 
group methods, while for technological objects of complex geometry we have the methods of 
numerical analysis. 

In conclusion, we will estimate the velocities of liquid motion in a regime of stabil- 
ized Marangoni convection for the process of cathodic mercury ion deposition on a mercury 
cathode from an aqueous solution. The fundamental calculation parameters are the following: 
T = 290 K, 6 e = 10 -5 m, L I : i0 -I m, L 2 = i0 "I m, r = 19, n* = 2, qe = 10-2 Pa'sec, qm = 
1.6"10 -3 Pa'sec, 8o/8U = -0.22(U + 0.5), K = 77.5 V -I, 

+ 

I r  = - 

RT 
n*F 

OU OC.. Iv=v~+Av ( 32t:(U-- Uo) (-- ~U,) 1' 
2(rim-+ ~13 \ 3 exp (-- 3gU,) 18! {- 

I 

4(U Ue)  1 ) -2 -exp  (-- 1) "-~ 5 .4 .10-2m/s  ec 
3D~k I exp ( - -  2nUt) (qe + ~1,0) 

IVml - -  5.4- 10 -s mlser 

It should be noted that the quadricellular structure corresponds to large-scale hydro- 
dynamic instability where there are slow internal velocities. There regions of transition 
to developed Marangoni convection for this system (Fig. 2): 0A) 7.3"10 -2 V; BC) 1.9"10 -2 V. 

The three-dimensional circulation cells with n I = n 2 = 2250 correspond to the regime of 
developed Marangoni convection for the given relationship between L I and L 2. 

NOTATION 

Ve(Vxe, Vye, Vze), Vm(Vxm , Vym, Vzm), field of velocities in the electrolyte and liquid- 

metal cathode phase, respectively (m/sec); Ce(x, y, z, t), field of electroactive particle 
concentrations (EAP) in the electrolyte phase (mole/m~); Ve and ~m are coefficients of kine- 
matic viscosity for the electrolyte and electrode, respectively (m2/sec); qe and ~m are co- 
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efficients of dynamic viscosity for the electrolyte and electrode (Pa'sec); C o , volumetric 
EAP concentration; < = (n*F/RT); n*, cation change;F, Faraday constant (96,487C~ulombs per 
gram equivalent); R, universal gas constant [8.31J/(K'mole)]; T, mean reaction surface 

temperature (K); U = (RT/n*F)In C~ , concentrated overvoltage (V); ~I(U) = (--I+ r~ 

6e, thickness of EAP diffusion layer (m); o, interphase tension (J/m2); AU, internal noise 
level (V); ~e (~x e, ~Ye' ~Ze)' mm (~x m, ~Ym' mZm)' rotation field in the electrolyte and the 

electrode, respectively; Pn, time constant (sec-Z); k n -2 2 = ]/kxn+k~, , wave vector (I/m21; 

kxn = ~n/Lz; ky n = ~n/L2; L I, L~, horizontal dimensions of electrode surface (m); ben = 
( a . a a } ,  a2 

]/k~+ ~/De; ; f(t), unstable concentration perturbation mode; V = ax a"-y ; ~ " A = - -  

as as ' ax2 
oy~ + Oz ~ 

+ 
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